Skip to content

Polyglutamic Acid Synthesis Essay

In this article we describe a versatile methodology for the synthesis of polyglutamic acid (PGA) derivatives bearing orthogonal reactive sites. The reactive groups enable selective conjugation chemistry by copper catalyzed azide– coupling (). PGA was derived in aqueous media as well as in organic media using (DMTTM) salts. The of attached chemical moieties ranges from simple PEGylation with 2,5,8,11,14,17,20-heptaoxadocosan-22-amine (mEG(6)NH2) to the incorporation of , (NH2-EG(2)N3), and (NH2-EG(6)N3). Herein, it is demonstrated that the degree of functionalization can be easily controlled within this one pot reaction. Additionally, we report conditions for the CuAAC with various PGA derivatives, which can be employed for site-specific conjugation of either hydrophilic or hydrophobic compounds.

  • Borbely M, Nagasaki Y, Borbely J, Fan K, Bhogle A, Sevoian M (1994) Biosynthesis and chemical modification of poly(γ-glutamic acid). Polym Bull 32:127–132Google Scholar

  • Bovarnick M (1942) The formation of extracellular D(-)glutamic acid polypeptide by Bacillus subtilis. J Biol Chem 145:415–424Google Scholar

  • Cheng C, Asada Y, Aida T (1989) Production of γ-polyglutamic acid by Bacillus subtilis A35 under denitrifying conditions. Agric Biol Chem 53:2369–2375Google Scholar

  • Choi HJ, Kunioka M (1995) Preparation conditions and swelling equilibria of hydrogel prepared by γ-irradiation from microbial poly(γ-glutamic acid). Radiat Phys Chem 46:175–179Google Scholar

  • Fujii H (1963) On the formation of mucilage by Bacillus natto. Part III. Chemical constitutions of mucilage in natto (1). Nippon Nogeikagaku Kaishi 37:407–411Google Scholar

  • Giannos SA, Shah D, Gross RA, Kaplan DL, Mayer JM (1990) The biosynthesis of unusual polyamides containing glutamic acid. ACS Polym Prep 31:209–210Google Scholar

  • Goto A, Kunioka M (1992) Biosynthesis and hydrolysis of poly(γ-glutamic acid) from Bacillus subtilis IFO3335. Biosci Biotechnol Biochem 56:1031–1035Google Scholar

  • Hara T, Ueda S (1982) Regulation of polyglutamate production in Bacillus subtilis (natto); transformation of high PGA productivity. Agric Biol Chem 46:2275–2281Google Scholar

  • Hara T, Aumayr A, Fujio Y, Ueda S (1982) Elimination of plasmidlinked polyglutamate production by Bacillus subtilis (natto) with acridine orange. Appl Environ Microbiol 44:1456–1458Google Scholar

  • Hara T, Fujio Y, Ueda S (1982) Polyglutamate production by Bacillus subtilis (natto). J Appl Biochem 4:112–120Google Scholar

  • Holzer H (1969) Regulation of enzymes by enzyme-catalyzed chemical modification. Adv Enzymol 32:297–326Google Scholar

  • Ivánovics G, Bruckner V (1937) Chemische und immunologische Studien über den Mechanismus der Milzbrandinfektion und Immunität; die chemische Struktur der Kapselsubstanz des Milzbrandbazillus und der serologisch identischen spezifischen Substanz des Bacillus mesentericus. Z Immunitätsforsch 90:304–318Google Scholar

  • Ivánovics G, Erdös L (1937) Ein Beitrag zum Wesen der Kapselsubstanz des Milzbrandbazillus. Z Immunitätsforsch 90:5–19Google Scholar

  • Kawaguchi Y, Doi Y (1992) Kinetics and mechanism of synthesis and degradation of poly(3-hydroxybutyrate) in Alcaligenes eutrophus. Macromolecules 25:2324–2329Google Scholar

  • Kubota H, Matsunobu T, Uotani K, Takebe H, Satoh A, Tanaka T, Taniguchi M (1993a) Production of poly(γ-glutamic acid) by Bacillus subtilis F-2–01. Biosci Biotechnol Biochem 57: 1212–1213Google Scholar

  • Kubota H, Nambu Y, Endo T (1993b) Convenient and quantitative esterification of poly(γ-glutamic acid) produced by microorganism. J Polym Sci Part A Polym Chem 31:2877–2878Google Scholar

  • Kunioka M (1993) Properties of hydrogels prepared by γ-irradiation in microbial poly(γ-glutamic acid) aqueous solutions. Kobunshi Ronbunshu 50:755–760Google Scholar

  • Kunioka M, Goto A (1994) Biosynthesis of poly(γ-glutamic acid) from l-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl Microbiol Biotechnol 40:867–872Google Scholar

  • Leonard CG, Housewright RD, Thorne CB (1962) Effects of metal ions on the optical specificity of glutamine synthetase and glutamyl transferase of Bacillus licheniformis. Biochim Biophys Acta 62:432–434Google Scholar

  • Murao S (1969) On the polyglutamic acid fermentation. Kobunshi 16:1204–1212Google Scholar

  • Murao S, Sawa S, Murakawa T, Omata S (1971) Polyglutamic acid fermentation part II. Culture conditions for the production of polyglutamic acid by Bacillus subtilis no.5E. 1. Effect of amino acids and glucose. Nippon Nogeikagaku Kaishi 45:118–123Google Scholar

  • Sawa S, Murao S, Murakawa T, Omata S (1971) Polyglutamic acid fermentation. Part III. Culture conditions for the production of polyglutamic acid by Bacillus subtilis no.5E. 2. Investigations on the synthetic media. Nippon Nogeikagaku Kaishi 45:124–129Google Scholar

  • Sawamura S (1913) On Bacillus natto. J Coll Agric Tokyo 5:189–191Google Scholar

  • Sonnleitner B, Heinzle E, Braunegg G, Lafferty RM (1979) Formal kinetics of poly-β-hydroxybutyric acid (PHB) production in Alcaligenes eutrophus H16 and Mycoplana rubra R14 with respect to the dissolved oxygen tension in ammonium-limited batch cultures. Eur J Appl Microbiol Biotechnol 7:1–10Google Scholar

  • Stadtman ER (1966) Allosteric regulation of enzyme activity. Adv Enzymol 28:41–154Google Scholar

  • Tanaka T, Hiruta O, Futamura T, Uotani K, Satoh A, Taniguchi M, Oi S (1993) Purification and characterization of poly(γ-glutamic acid) hydrolase from a filamentous fungus, Myrothecium sp. TM-4222. Biosci Biotechnol Biochem 57:2148–2153Google Scholar

  • Thorne CB, Molnar DM (1955) d-Amino acid transamination in Bacillus anthracis. J Bacteriol 70:420–426Google Scholar

  • Thorne CB, Gomez, CG, Blind GR, Housewright RD (1953) Synthesis of glutamic acid and glutamyl polypeptide by Bacillus anthracis. III. Factors affecting peptide production in synthetic liquid media. J Bacteriol 65:472–478Google Scholar

  • Thorne CB, Gomez CG, Noyes HE, Housewright RD (1954) Production of glutamyl polypeptide by Bacillus subtilis. J Bacteriol 68:307–315Google Scholar

  • Troy FA (1973) Chemistry and biosynthesis of the poly(γ-d-glutamyl) capsule in Bacillus subtilis. 1. Properties of the membrane-mediated biosynthetic reaction. J Biol Chem 248:305–315Google Scholar